Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Thromb Res ; 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2246097

ABSTRACT

INTRODUCTION: The benefits of early thromboprophylaxis in symptomatic COVID-19 outpatients remain unclear. We present the 90-day results from the randomised, open-label, parallel-group, investigator-initiated, multinational OVID phase III trial. METHODS: Outpatients aged 50 years or older with acute symptomatic COVID-19 were randomised to receive enoxaparin 40 mg for 14 days once daily vs. standard of care (no thromboprophylaxis). The primary outcome was the composite of untoward hospitalisation and all-cause death within 30 days from randomisation. Secondary outcomes included arterial and venous major cardiovascular events, as well as the primary outcome within 90 days from randomisation. The study was prematurely terminated based on statistical criteria after the predefined interim analysis of 30-day data, which has been previously published. In the present analysis, we present the final, 90-day data from OVID and we additionally investigate the impact of thromboprophylaxis on the resolution of symptoms. RESULTS: Of the 472 patients included in the intention-to-treat population, 234 were randomised to receive enoxaparin and 238 no thromboprophylaxis. The median age was 57 (Q1-Q3: 53-62) years and 217 (46 %) were women. The 90-day primary outcome occurred in 11 (4.7 %) patients of the enoxaparin arm and in 11 (4.6 %) controls (adjusted relative risk 1.00; 95 % CI: 0.44-2.25): 3 events per group occurred after day 30. The 90-day incidence of cardiovascular events was 0.9 % in the enoxaparin arm vs. 1.7 % in controls (relative risk 0.51; 95 % CI: 0.09-2.75). Individual symptoms improved progressively within 90 days with no difference between groups. At 90 days, 42 (17.9 %) patients in the enoxaparin arm and 40 (16.8 %) controls had persistent respiratory symptoms. CONCLUSIONS: In adult community patients with COVID-19, early thromboprophylaxis with enoxaparin did not improve the course of COVID-19 neither in terms of hospitalisation and death nor considering COVID-19-related symptoms.

2.
Viruses ; 14(8)2022 07 22.
Article in English | MEDLINE | ID: covidwho-1957455

ABSTRACT

Background. Fixed-dose ultrasound-assisted catheter-directed thrombolysis (USAT) rapidly improves hemodynamic parameters and reverses right ventricular dysfunction caused by acute pulmonary embolism (PE). The effectiveness of USAT for acute PE associated with coronavirus disease 2019 (COVID-19) is unknown. Methods and results. The study population of this cohort study consisted of 36 patients with an intermediate-high- or high-risk acute PE treated with a fixed low-dose USAT protocol (r-tPA 10-20 mg/15 h). Of these, 9 patients tested positive for COVID-19 and were age-sex-matched to 27 patients without COVID-19. The USAT protocol included, beyond the infusion of recombinant tissue plasminogen activator, anti-Xa-activity-adjusted unfractionated heparin therapy (target 0.3-0.7 U/mL). The study outcomes were the invasively measured mean pulmonary arterial pressure (mPAP) before and at completion of USAT, and the National Early Warning Score (NEWS), according to which more points indicate more severe hemodynamic impairment. Twenty-four (66.7%) patients were men; the mean age was 67 ± 14 years. Mean  ±  standard deviation mPAP decreased from 32.3 ± 8.3 to 22.4 ± 7.0 mmHg among COVID-19 patients and from 35.4 ± 9.7 to 24.6 ± 7.0 mmHg among unexposed, with no difference in the relative improvement between groups (p = 0.84). Within 12 h of USAT start, the median NEWS decreased from six (Q1-Q3: 4-8) to three (Q1-Q3: 2-4) points among COVID-19 patients and from four (Q1-Q3: 2-6) to two (Q1-Q3: 2-3) points among unexposed (p = 0.29). One COVID-19 patient died due to COVID-19-related complications 14 days after acute PE. No major bleeding events occurred. Conclusions. Among patients with COVID-19-associated acute PE, mPAP rapidly decreased during USAT with a concomitant progressive improvement of the NEWS. The magnitude of mPAP reduction was similar in patients with and without COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pulmonary Embolism , Acute Disease , Aged , Aged, 80 and over , COVID-19/complications , Catheters , Cohort Studies , Female , Heparin , Humans , Male , Middle Aged , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/drug therapy , Retrospective Studies , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/therapeutic use , Treatment Outcome
3.
Lancet Haematol ; 9(8): e585-e593, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1915207

ABSTRACT

BACKGROUND: COVID-19 is a viral prothrombotic respiratory infection. Heparins exert antithrombotic and anti-inflammatory effects, and might have antiviral properties. We aimed to investigate whether thromboprophylaxis with enoxaparin would prevent untoward hospitalisation and death in symptomatic, but clinically stable outpatients with COVID-19. METHODS: OVID was a randomised, open-label, parallel-group, investigator-initiated, phase 3 trial and was done at eight centres in Switzerland and Germany. Outpatients aged 50 years or older with acute COVID-19 were eligible if they presented with respiratory symptoms or body temperature higher than 37·5°C. Eligible participants underwent block-stratified randomisation (by age group 50-70 vs >70 years and by study centre) in a 1:1 ratio to receive either subcutaneous enoxaparin 40 mg once daily for 14 days versus standard of care (no thromboprophylaxis). The primary outcome was a composite of any untoward hospitalisation and all-cause death within 30 days of randomisation. Analysis of the efficacy outcomes was done in the intention-to-treat population. The primary safety outcome was major bleeding. The study was registered in ClinicalTrials.gov (NCT04400799) and has been completed. FINDINGS: At the predefined formal interim analysis for efficacy (50% of total study population), the independent Data Safety Monitoring Board recommended early termination of the trial on the basis of predefined statistical criteria having considered the very low probability of showing superiority of thromboprophylaxis with enoxaparin for the primary outcome under the initial study design assumptions. Between Aug 15, 2020, and Jan 14, 2022, from 3319 participants prescreened, 472 were included in the intention-to-treat population and randomly assigned to receive enoxaparin (n=234) or standard of care (n=238). The median age was 57 years (IQR 53-62) and 217 (46%) were women. The 30-day risk of the primary outcome was similar in participants allocated to receive enoxaparin and in controls (8 [3%] of 234 vs 8 [3%] of 238; adjusted relative risk 0·98; 95% CI 0·37-2·56; p=0·96). All hospitalisations were related to COVID-19. No deaths were reported during the study. No major bleeding events were recorded. Eight serious adverse events were recorded in the enoxaparin group versus nine in the control group. INTERPRETATION: These findings suggest thromboprophylaxis with enoxaparin does not reduce early hospitalisations and deaths among outpatients with symptomatic COVID-19. Futility of the treatment under the initial study design assumptions could not be conclusively assessed owing to under-representation of older patients and consequent low event rates. FUNDING: SNSF (National Research Programme COVID-19 NRP78: 198352), University Hospital Zurich, University of Zurich, Dr-Ing Georg Pollert (Berlin), Johanna Dürmüller-Bol Foundation.


Subject(s)
COVID-19 , Enoxaparin , Thrombosis , Aged , COVID-19/epidemiology , Enoxaparin/adverse effects , Female , Humans , Male , Middle Aged , Outpatients , SARS-CoV-2 , Thrombosis/prevention & control , Treatment Outcome
4.
Thromb Res ; 212: 44-50, 2022 04.
Article in English | MEDLINE | ID: covidwho-1699972

ABSTRACT

BACKGROUND: Pulmonary embolism is a known complication of coronavirus disease 2019 (COVID-19). Epidemiological population data focusing on pulmonary embolism-related mortality is limited. METHODS: Veneto is a region in Northern Italy counting 4,879,133 inhabitants in 2020. All ICD-10 codes from death certificates (1st January 2018 to 31st December 2020) were examined. Comparisons were made between 2020 (COVID-19 outbreak) and the average of the two-year period 2018-2019. All-cause, COVID-19-related and the following cardiovascular deaths have been studied: pulmonary embolism, hypertensive disease, ischemic heart disease, atrial fibrillation/flutter, and cerebrovascular diseases. RESULTS: In 2020, a total of 56,412 deaths were recorded, corresponding to a 16% (n = 7806) increase compared to the period 2018-2019. The relative percentage increase during the so-called first and second waves was 19% and 44%, respectively. Of 7806 excess deaths, COVID-19 codes were reported in 90% of death certificates. The percentage increase in pulmonary embolism-related deaths was 27% (95%CI 19-35%), 1018 deaths during the year 2020, compared to 804 mean annual deaths in the period 2018-2019. This was more evident among men, who experience an absolute increase of 147 deaths (+45%), than in women (+67 deaths; +14%). The increase was primarily driven by deaths recorded during the second wave (+91% in October-December). An excess of deaths, particularly among men and during the second wave, was also observed for other cardiovascular diseases, notably hypertensive disease, atrial fibrillation, cerebrovascular disease, and ischemic heart disease. CONCLUSIONS: We observed a considerable increase of all-cause mortality during the year 2020. This was mainly driven by COVID-19 and its complications. The relative increase in the number of pulmonary embolism-related deaths was more prominent during the second wave, suggesting a possible underdiagnosis during the first wave.


Subject(s)
COVID-19 , Pulmonary Embolism , COVID-19/complications , Female , Humans , International Classification of Diseases , Italy/epidemiology , Male , Pandemics , Pulmonary Embolism/epidemiology
6.
Res Pract Thromb Haemost ; 5(5): e12520, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1355899

ABSTRACT

INTRODUCTION: Pulmonary embolism (PE) has not been accounted for as a cause of death contributing to cause-specific mortality in global reports. METHODS: We analyzed global PE-related mortality by focusing on the latest year available for each member state in the World Health Organization (WHO) mortality database, which provides age-sex-specific aggregated mortality data transmitted by national authorities for each underlying cause of death. PE-related deaths were defined by International Classification of Diseases, Tenth Revision codes for acute PE or nonfatal manifestations of venous thromboembolism (VTE). The 2001 WHO standard population served for standardization. RESULTS: We obtained data from 123 countries covering a total population of 2 602 561 422. Overall, 50 (40.6%) were European, 39 (31.7%) American, 13 (10.6%) Eastern Mediterranean, 13 (10.6%) Western Pacific, 3 (2.4%) Southeast Asian, and 2 (1.6%) African. Of 116 countries classifiable according to population income, 57 (49.1%) were high income, 42 (36.2%) upper-middle income, 14 (12.1%) lower-middle income, and 3 (2.6%) low income. A total of 18 726 382 deaths were recorded, of which 86 930 (0.46%) were attributed to PE. PE-related mortality rate increased with age in most countries. The reporting of PE-related deaths was heterogeneous, with an age-standardized mortality rate ranging from 0 to 24 deaths per 100 000 population-years. Income status only partially explained this heterogeneity. CONCLUSIONS: Reporting of PE-related mortality in official national vital registration was characterized by extreme heterogeneity across countries. These findings mandate enhanced efforts toward systematic and uniform coverage of PE-related mortality and provides a case for full recognition of PE and VTE as a primary cause of death.

7.
Hamostaseologie ; 42(3): 195-197, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1279924

ABSTRACT

The clinical spectrum of patients with coronavirus disease 2019 (COVID-19) ranges from asymptomatic cases to severe pneumonia with acute respiratory distress syndrome. COVID-19 is associated with an increased risk of thromboembolic complications, notably pulmonary embolism and deep vein thrombosis. Arterial cardiovascular complications and myocarditis have also been described in association with COVID-19, but appear to be less prevalent. In this report of a 57-year-old man with multiple splanchnic infarctions, arterial dissections and COVID-19 as the sole potential trigger, we describe a novel type of complications and put it in the context of a growing literature on this topic.


Subject(s)
COVID-19 , Pulmonary Embolism , Thrombosis , Arteries , COVID-19/complications , Humans , Infarction/complications , Male , Middle Aged , Pulmonary Embolism/complications , Thrombosis/complications
11.
Trials ; 21(1): 770, 2020 Sep 09.
Article in English | MEDLINE | ID: covidwho-755207

ABSTRACT

OBJECTIVES: The OVID study will demonstrate whether prophylactic-dose enoxaparin improves survival and reduces hospitalizations in symptomatic ambulatory patients aged 50 or older diagnosed with COVID-19, a novel viral disease characterized by severe systemic, pulmonary, and vessel inflammation and coagulation activation. TRIAL DESIGN: The OVID study is conducted as a multicentre open-label superiority randomised controlled trial. PARTICIPANTS: Inclusion Criteria 1. Signed patient informed consent after being fully informed about the study's background. 2. Patients aged 50 years or older with a positive test for SARS-CoV2 in the past 5 days and eligible for ambulatory treatment. 3. Presence of respiratory symptoms (i.e. cough, sore throat, or shortness of breath) or body temperature >37.5° C. 4. Ability of the patient to travel to the study centre by private transportation, performed either by an accompanying person from the same household or by the patient themselves 5. Ability to comply with standard hygiene requirements at the time of in-hospital visit, including a face mask and hand disinfectant. 6. Ability to walk from car to study centre or reach it by wheelchair transport with the help of an accompanying person from the same household also complying with standard hygiene requirements. 7. Ability to self-administer prefilled enoxaparin injections after instructions received at the study centre or availability of a person living with the patient to administer enoxaparin. Exclusion Criteria 1. Any acute or chronic condition posing an indication for anticoagulant treatment, e.g. atrial fibrillation, prior venous thromboembolism (VTE), acute confirmed symptomatic VTE, acute coronary syndrome. 2. Anticoagulant thromboprophylaxis deemed necessary in view of the patient's history, comorbidity or predisposing strong risk factors for thrombosis: a. Any of the following events occurring in the prior 30 days: fracture of lower limb, hospitalization for heart failure, hip/knee replacement, major trauma, spinal cord injury, stroke, b. previous VTE, c. histologically confirmed malignancy, which was diagnosed or treated (surgery, chemotherapy, radiotherapy) in the past 6 months, or recurrent, or metastatic, or inoperable. 3. Any clinically relevant bleeding (defined as bleeding requiring hospitalization, transfusion, surgical intervention, invasive procedures, occurring in a critical anatomical site, or causing disability) within 30 days prior to randomization or sign of acute bleeding. 4. Intracerebral bleeding at any time in the past or signs/symptoms consistent with acute intracranial haemorrhage. 5. Haemoglobin <8 g/dL and platelet count <50 x 109 cells/L confirmed by recent laboratory test (<90 days). 6. Subjects with any known coagulopathy or bleeding diathesis, including known significant liver disease associated with coagulopathy. 7. Severe renal insufficiency (baseline creatinine clearance <30 mL/min calculated using the Cockcroft-Gault formula) confirmed by recent laboratory test (<90 days). 8. Contraindications to enoxaparin therapy, including prior heparin-induced thrombocytopenia and known hypersensitivity. 9. Current use of dual antiplatelet therapy. 10. Participation in other interventional studies over the past 30 days. 11. Non-compliance or inability to adhere to treatment or lack of a family environment or support system for home treatment. 12. Cognitive impairment and/or inability to understand information provided in the study information. Patient enrolment will take place at seven Swiss centres, including five university hospitals and two large cantonal hospitals. INTERVENTION AND COMPARATOR: Patients randomized to the intervention group will receive subcutaneous enoxaparin at the recommended dose of 4,000 IU anti-Xa activity (40 mg/0.4 ml) once daily for 14 days. Patients randomized to the comparator group will receive no anticoagulation. MAIN OUTCOMES: Primary outcome: a composite of any hospitalization or all-cause death occurring within 30 days of randomization. SECONDARY OUTCOMES: (i) a composite of cardiovascular events, including deep vein thrombosis (including catheter-associated), pulmonary embolism, myocardial infarction/myocarditis, arterial ischemia including mesenteric and extremities, acute splanchnic vein thrombosis, or ischemic stroke within 14 days, 30 days, and 90 days of randomization; (ii) each component of the primary efficacy outcome, within 14 days, 30 days, and 90 days of randomization; (iii) net clinical benefit (accounting for the primary efficacy outcome, composite cardiovascular events, and major bleeding), within 14 days, 30 days, and 90 days of enrolment; (iv) primary efficacy outcome, within 14 days, and 90 days of enrolment; (v) disseminated intravascular coagulation (ISTH criteria, in-hospital diagnosis) within 14 days, 30 days, and 90 days of enrolment. RANDOMISATION: Patients will undergo block stratified randomization (by age: 50-70 vs. >70 years; and by study centre) with a randomization ratio of 1:1 with block sizes varying between 4 and 8. Randomization will be performed after the signature of the informed consent for participation and the verification of the eligibility criteria using the electronic data capture software (REDCAP, Vanderbilt University, v9.1.24). BLINDING (MASKING): In this open-label study, no blinding procedures will be used. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size calculation is based on the parameters α = 0.05 (2-sided), power: 1-ß = 0.8, event rate in experimental group, pexp = 0.09 and event rate in control group, pcon = 0.15. The resulting total sample size is 920. To account for potential dropouts, the total sample size was fixed to 1000 with 500 patients in the intervention group and 500 in the control group. TRIAL STATUS: Protocol version 1.0, 14 April 2020. Protocol version 3.0, 18 May 2020 Recruiting start date: June 2020. Last Patient Last Visit: March 2021. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04400799 First Posted: May 26, 2020 Last Update Posted: July 16, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Anticoagulants/administration & dosage , Betacoronavirus/pathogenicity , Blood Coagulation/drug effects , Coronavirus Infections/drug therapy , Enoxaparin/administration & dosage , Pneumonia, Viral/drug therapy , Thrombosis/prevention & control , Anticoagulants/adverse effects , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Enoxaparin/adverse effects , Equivalence Trials as Topic , Host-Pathogen Interactions , Humans , Multicenter Studies as Topic , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Thrombosis/blood , Thrombosis/diagnosis , Thrombosis/virology , Time Factors , Treatment Outcome
13.
Thromb Res ; 191: 9-14, 2020 07.
Article in English | MEDLINE | ID: covidwho-153760

ABSTRACT

BACKGROUND: Few data are available on the rate and characteristics of thromboembolic complications in hospitalized patients with COVID-19. METHODS: We studied consecutive symptomatic patients with laboratory-proven COVID-19 admitted to a university hospital in Milan, Italy (13.02.2020-10.04.2020). The primary outcome was any thromboembolic complication, including venous thromboembolism (VTE), ischemic stroke, and acute coronary syndrome (ACS)/myocardial infarction (MI). Secondary outcome was overt disseminated intravascular coagulation (DIC). RESULTS: We included 388 patients (median age 66 years, 68% men, 16% requiring intensive care [ICU]). Thromboprophylaxis was used in 100% of ICU patients and 75% of those on the general ward. Thromboembolic events occurred in 28 (7.7% of closed cases; 95%CI 5.4%-11.0%), corresponding to a cumulative rate of 21% (27.6% ICU, 6.6% general ward). Half of the thromboembolic events were diagnosed within 24 h of hospital admission. Forty-four patients underwent VTE imaging tests and VTE was confirmed in 16 (36%). Computed tomography pulmonary angiography (CTPA) was performed in 30 patients, corresponding to 7.7% of total, and pulmonary embolism was confirmed in 10 (33% of CTPA). The rate of ischemic stroke and ACS/MI was 2.5% and 1.1%, respectively. Overt DIC was present in 8 (2.2%) patients. CONCLUSIONS: The high number of arterial and, in particular, venous thromboembolic events diagnosed within 24 h of admission and the high rate of positive VTE imaging tests among the few COVID-19 patients tested suggest that there is an urgent need to improve specific VTE diagnostic strategies and investigate the efficacy and safety of thromboprophylaxis in ambulatory COVID-19 patients.


Subject(s)
Arterial Occlusive Diseases/etiology , Coronavirus Infections/complications , Pneumonia, Viral/complications , Thrombophilia/etiology , Venous Thromboembolism/etiology , Acute Coronary Syndrome/epidemiology , Acute Coronary Syndrome/etiology , Aged , Aged, 80 and over , Ambulatory Care , Anticoagulants/therapeutic use , Arterial Occlusive Diseases/diagnostic imaging , Arterial Occlusive Diseases/epidemiology , Brain Ischemia/epidemiology , Brain Ischemia/etiology , COVID-19 , Comorbidity , Coronary Thrombosis/diagnostic imaging , Coronary Thrombosis/epidemiology , Coronary Thrombosis/etiology , Critical Care , Disseminated Intravascular Coagulation/epidemiology , Disseminated Intravascular Coagulation/etiology , Female , Hospital Mortality , Hospitals, Teaching/statistics & numerical data , Hospitals, Urban/statistics & numerical data , Humans , Italy/epidemiology , Length of Stay/statistics & numerical data , Male , Middle Aged , Pandemics , Patient Admission , Pulmonary Embolism/diagnostic imaging , Pulmonary Embolism/epidemiology , Pulmonary Embolism/etiology , Retrospective Studies , Risk Factors , Thrombophilia/drug therapy , Venous Thromboembolism/diagnostic imaging , Venous Thromboembolism/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL